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ABSTRACT

We have used a time series of aerosol surface based on

the measurements of Hofmann (1990) to investigate the

modulation of total column ozone caused by the perturba-

tion to gas phase chemistry by the reaction N2Os(gas) +

H20(aero) _ 2HNOa(gas) on the surface of stratospheric

aerosols. We have tested a range of values for its reaction

probability, 7 = 0.02, 0.13 and 0.26 which we compared to

unperturbed homogeneous chemistry. Our analysis spans

a period from Jan. 1974 to Oct. 1994. The results sug-

gest that if lower values of "7 are the norm then we would

expect larger ozone losses for highly enhanced aerosol con-

tent than for larger values of 7. The ozone layer is more

sensitive to the magnitude of the reaction probability un-

der background conditions than during volcanically active

periods. For most conditions, the conversion of N02 to

HNO3 is saturated for reaction probability in the range of

laboratory measurements, but is only absolutely saturated

following major volcanic eruptions when the heterogeneous

loss dominates the losses of N_05. The ozone loss due to

this heterogeneous reaction increases with the increasing

chlorine load. Total ozone losses calculated are compara-

ble to ozone losses reported from TOMS and Dobson data.

The appearance of massive ozone depletion over

Antarctica has prompted a great interest in heterogeneous

chemistry on polar stratospheric clouds (PSCs). More

recently, it has become apparent that heterogeneous re-

actions may also be playing an important role in ozone

destruction outside of the polar regions (ttofmann and

Solomon, 1989; Brasseur et al., 1990; Pitari et al., 1991;

Rodriguez et al., 1991). The ozone destruction from het-

erogeneous reactions is related to the availability of aerosol

surface which is modulated by potent volcanic eruptions

which penetrate the stratosphere.

In this study, we evaluate this rnodulation of ozone t)y

volcanic eruptions using a one-dimensional photochemical

model and input the aerosol surface as a time series based

on the measurements presented by tlofmann (1990). \Ve

have assumed that the aerosols are spherical and can be

represented by a log-normal size distribution. The mea-

surements spanned a period from 1974 to April, 1990.
Prior to 1974 and from the end of the data set to June

15, 1991, the aerosol surface was kept constant to represent

aerosol background conditions. To represent the impact of

Pinatubo for the period from June 15, 1991 to October 13,

1994, the aerosol parameters from the El Chichdn pulse,

taken to span the period from April 4, 1982 to April 1st,

1990, were used and the amount was scaled by 1.5 (Lar-

son et al., 1982). Consequently, we have extended the time

series from 1974 to late 1994 (Figure 1). The profiles of

aerosol surface adopted were based on measured profiles

of aerosol mass mixing ratio taken in mid-1989 (Hofmann,

1990). In our model, the aerosol layer extends from 7 to

27 km with peak mixing ratio at 22 km and the profile is

assumed to remain unchanged with time.

They are a number of heterogeneous reactions of pos-

sible importance. In this note, we concentrate on one het-

erogeneous reaction:

N20s (gas) + H20 (aero) _ 2 tIN03 (gas) (1)

(Evans et al., 1985; Hofmann and Solomon, 1989). This

reaction affects the partitioning of nitrogen species. It

channels odd nitrogen from a short-lived reservoir species,

N2Os, to a longer-lived one, HNOa. Although the de-

struction of ozone by NO2 is expected to decrease, it is

expected to be offset by an increase in active Cl_ (eg. Ro-

driguez et al., 1991).

We have used a simple parametrization for the het-

erogeneous chemistry based on the aerosol surface area

and measured reaction probability. Laboratory measure-

ments of reaction probability ("t) of N_05 + H_O on

aerosol surface range from 0.04 at 283°K (Van Doren et al.,

1990) to 0.09 and 0.139 at 293°K and 274°K respectively

(Mozurkiewich and Calvert, 1988) and to 0.14 at 215°K

(ttanson and Ravi_hankara, 1991). These rates were found

to be independent of the relative humidi_y (Mozm'kiewich

and Calvert, 1988). To account for possible temperatnre

dependencies in the react ion prot)ability and for uncertain-

ties in total aerosol surface (emerging flom assumptions

made in its determinalion from published data), we haw"
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Figure 1: Aerosol surface time series at aerosol peak mix-

ing ratio. See text for details. The peaks represent vol-

canic eruptions: 1. Fuego, 2. Mount St.Helens, 3. Maid,

4. Nyamuragira, 5. E1 Chich6n, 6. Nevado del Ruiz, and

7. Pinatubo. The Pinatubo pulse is assumed to be 1.5 ×

El Chich6n's (Larson et al., 1992).

chosen the reaction probability to cover a range of values:

0.02, 0.13 and 0.26. We have compared the results of these

runs to a homogeneous chemistry case.

Our analysis spanned a period from January 1974 to

October 1994. Scenarios were run with the chlorofluoro-

carbons and halons fluxes increasing according to OECD

estimates to 1980 (OECD, 1981), according to global pro-

duction rates from 1980 to 1985 and follow both the

Montreal Protocol and the London amendments thereafter

(eg. McConnell et al., 1990).

Figure 2 shows time series of total column ozone for

various values of 7. For the period from early 1974 to

late 1994, the loss of ozone due to homogeneous chemistry

increases monotonically in response to increasing chlorine

loading. Calculations for heterogeneous cases dearly show

signatures of major volcanic eruptions especially those of

Fuego (1974), E1 Chich6n (1982) and Pinatubo (1991).

Ozone loss maximizes for El Chich6n (-16 to -19 DU)

and Pinatubo (-14 to -19 DU) as compared to the total

column ozone in January 1979 and January 1990, respec-

tively. Maximum loss of ozone lags the maximum aerosol

surface peak by 2 to 4 months.

The effect of the heterogeneous reaction of N2Os is

determined by how close the chemistry is from satura-

tion . By saturation it is meant that the rate of reac-

tion N_Os (gas) + n20 (aero) --4 2 11N03 (gas)

is limited by the production rate of N2Os which is, in

turn, determined by the nightime forrnation of NO3 via

NO2 + 03 _ NO3 + 02 (with rate k2). It is expected that

most of the _%½05 formed wilt be converted to HN03, gen-

erating a significant reduction in NO2 <h'nsities and an

associated increase in ClO concentration. This process
increases the CIO concentration above that calculated for

unperturbed homogeneous chemistry. The CIO amplifica-
tion is limited by the amounts of available NO, which is

determined by an equilibrium between the loss of NO_ to
N20s formation and its production from HNOs photoly-

sis.

Figure 3 shows time series for the loss time constants

for N20s to form HN03 (r_) (with 7 = 0.13), to photolyse

(r2 = 1/JN2o,), and for NO2 loss to Os (rs = 11k2(03)).

For 7 = 0.13, the chemistry is saturated with NO2 +

Os --* NO3 + 02, the slowest reaction, being rate limit-

ing. It can be seen that, during periods of volcanic qui-

escence (mid-1976 to 1980; 1988-91), photolysis of N20s

is more rapid than the heterogeneous loss of N2Os, even

for 7 = 0.13. During volcanically active periods (1980-86;

1992-thereafter), the N20s conversion to HN03 is faster

than its photolysis. The size of rl versus the length of the

night (rN) is indicative of the strength of the NO2 con-

version to HNO3. If rl < rN, most of the N20s formed

during the night will be converted to HNOs and the nigh-

time NO2 loss will be maximized. On the other hand, if

rl > rN, a fraction of the N20s formed during the night

will be present at sunrise. The heterogeneous reaction will

then be competing with N205 photolysis. For background

aerosol conditions, photolysis dominates the N20s losses

and a large fraction of the N20s will be converted back

to NO2. This limits the increase in ClO concentration

and reduces the ozone loss. The magnitude of the sunrise

concentration of N=Os is inversely proportional to the re-

action probability making the chemistry more sensitive to

*/during periods of volcanic quiescence (Figure 2).

During volcanically active periods, ra -"_: r2 . We call

this situation absolute saturation because by sunrise,

N20s will have been mostly converted to HN03 with only

a small fraction left to regenerate the NO2 through the rel-

atively slower N20s photolysis. Under these conditions,

lower values of ozone column are found. The balance be-

tween N_Os + H20(aerosol) and N20s photolysis is deter-

mined by the aerosol loading. Periods of enhanced aerosol

content tend to favour the heterogeneous reaction leading

to a less efficient, but still active, photolysis. I,br instance,

in 1979, our calculations show that 64 % of the daily aver-

aged N_Os was converted back to NO_ by photolysis and

only 34 % was channelled to HN03 by the heterogeneous

reaction. At the peak of the E1 Chich6n aerosol pertur-

bation (1983), only 4 % of the N20s was converted back

to NO_ while 96 % was transformed into HNOs. What

emerges from this work is that even for saturated chem-

istry the aerosol loading will modulate the NO_ and ClO

concentrations by controlling the relative balance between

heterogeneous conversion of N20s and its photolysis. This

can be seen in the time series of total column of ozone (Fig-

ure 2) as the well defined troughs matching the aerosol

peaks of Figure 1. It can further be added that for en-

hanced aerosol levels, the chemistry becomes less sensitive

to changes in aerosol loading.
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Figure 2: Total column ozone time series from 1974 to 1995. Cases include homogeneous

chemistry and the heterogeneous reaction N20s (gas) + n_o (aero) -4 2 HN03 (gas)
with 1' = 0.02, 0.13, 0.26.

The magnitude of the amplification of ClO densitie_
above the background levels determines how much ozone
will be lost with the inclusion of reaction (1): the larger
the reaction probability, the lower the possible ClO am-
plification following volcanic eruptions. For instance, in
the lower range of values, for 7 = 0.02, the ozone is more
sensitive to aerosol loading since there are no, or at least re- 1. E+06

duced, saturation effects. For this case, total column ozone "5
changes were calculated to be as large as - 5.8% between

1979 (aerosol background conditions) and 1983 (El Chi-
chon's maximum ozone loss). For the same period changes _ 1 . E+05

of -- 5.3% and -5.0% were calculated for 7 = 0.13 and o
o

7 = 0.26 respectively. For the Pinatubo eruption, total
ozone changes between June 1990 and March 1992 were

calculated to be: -6.0%, -5.2% and -4.6% for 7 = 0.02, 1 . E+04

0.13, 0.26, respectively. For the larger values of % abso-

lute saturation will set in sooner, the time depending on
the aerosol surface area, and the apparent ozone loss will
not be as great as shown by our calculations. 1 . E+03

Following volcanic eruptions, the temporal behaviour
of the recovery curve is slower for the higher 7 values. For
the low 7 values the recovery is more rapid and the ef-

fects of the diminished levels of aerosols are seen in ozone 1 . E+02

recovery with a short time lag. For the large values, the re-
covery is much slower until the aerosol levels become small

enough to lower the efficiency of the heterogeneous reac-
tion beyond the level of absolute saturation. For example,

the curves with 7 = 0.02 have a 50 % recovery by 1.5
years while it takes about 3 years for the case of'7 = 0.26.
Our calculations show that for reaction probability

within the range of measured values, the ozone loss be-

tween January 1979 and May 1990 is < 3.5% (Table 1).
These values are consistent the 4 % average loss observed
by TOMS in the 20-60 ° N area (Stolarski et al., 1992;

Figure 3:
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Time series of loss time constants at 20 km

from 1974 to Oct. 1994 for NO_ lost through the reac-

tion NO2 + Oa ---' NOa + 02; N20s lost by N2Os(gas) +

H20(aero) ---*2HNOa(gas) with "7= 0.13; and N205 lost
by photolysis.
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7 0.00 0.02 0.13 0.26

03 loss (%) -2.1 -2.4 -3.1 -3.5

Table 1: Total column ozone loss from Jan. 1979 to Jan.

1989.

0.02 0.13 0.26

CIO amplification 1.3 2.1 2.5

Table 2.: CIO amplification factor vs "t The amplification

factors were calculated at 20 km as the ratio of the C10

concentrations for the heterogeneous to the unperturbed

homogeneous cases. For given % the C10 amplification
factors calculated in Jan. 1979 and Jan. 1990 are identical.

Stolarski et al., 1991). It is also within the limits of the 4

% loss from 1980 to 1990 reported for the North-American

stations of the Dobson network (Stolarski et al., 1992).

Anthropogenic emissions of CFC and halos compounds

enhance the ozone loss due to reaction (1). For instance,

if 1979 and 1990 are assumed to be background years for

aerosol lo_lings and if we use January 1948 as a reference

year (334 DU), our calculations show that the ozone loss

due to reaction (1) with a _ - 0.13 was 2.4 % in 1979

and 3.4 % in 1990. The enhanced ozone loss is due mainly

to an increase in atmospheric chlorine load. It was found

that for lower aerosol levels such as is observed during

aerosol background years, the CIO concentration is en-

hanced above the unperturbed homogeneous chemistry by

a fixed factor which depends on the reaction probability of

reaction (1) (see Table 2). For instance, for 7 = 0.13, the

CIO concentrations in 1979 and in 1990 were 2.1 times the

C10 concentrations calculated for the homogeneous chem-

istry case. Thus, the proportion of the ozone loss will

increase as the atmospheric chlorine load increases. Con-

sequently, under aerosol background conditions, a large

reaction probability will generate a larger departure from

the unperturbed homogeneous chemistry case.

Compared to unperturbed homogeneous chemistry, the

heterogeneous reaction N2Os +//20 (nero) ---* 2H N 03 (gas)

lowers the total column of ozone. Following large volcanic

eruptions (eg E1 Chich6n and Pinatubo), maximum losses
of 19 DU were calculated with maximum relative losses

close to 6 % for the lower reaction probability. Recov-

ery from these eruptions is longer for the larger reaction

probability. During background a_rosol years, the ozone

layer appears more sensitive to the magnitude of the re-

action probability with calculated changes in total column

of ozone proportional to the reaction probability. These

background years correspond to a chemistry which is not

absolutely saturated, leaving room for extra NO_ conver-

sion to HN03. The 1979-1990 trends in total column of

ozone show a small departure from the unperturbed chem-

istry and remain within the range of observed TOMS

and Dobson data. Finally, the impact on the ozone layer of

the reaction studied amplifies with the increasing chlorine

loadings.
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